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Missile Autopilot Design Using Discrete-Time
Variable Structure Controller with Sliding Sector

A. A. Powly and M. Seetharama Bhat
Indian Institute of Science, Bangalore 560012, India

In this paper a discrete variable structure controller with sliding sector is designed for tracking the lateral
acceleration command for a dual-input air-to-air missile. A new algorithm is developed for the variable-width
sliding-sector design by considering the dissipativeness property of the system. The width of the sliding sector is
based on the norm of the linear uncertain system state and the reference input. The switching surface design is
based on the reduced-order dynamics. The control law is designed such that the state trajectory from any initial
point is driven into the sliding sector around the equilibrium point in the vicinity of the the switching surface σk

and thereafter remains inside it. The discrete sliding condition considered is ‖‖σk + 1‖‖ < ‖‖σk‖‖. Inside the sliding
sector, the closed-loop system is dissipative with a linear control law. The uncertain missile plant with matched
and mismatched uncertainty is considered, and the conditions on the norm-bound of the uncertainty are given for
robust stability in the sense of Lyapunov. Simulation results of the missile autopilot are also included to show the
efficacy of the proposed controller.

Nomenclature
Ct = tracking output matrix
f (x, k, u) = matched uncertainty
h = upper bound on mismatched uncertainty
rk = reference command
sgn( ) = signum function
Jd = sliding sector
uk = m-dimensional control input
Vk = Lyapunov function
xk = n-dimensional state variable
ytk = tracking output
� = augmented system input matrix
�Ap = plant uncertainty in continuous time domain
δk = sliding sector function
ρ = upper bound on the matched uncertainty
σk = switching function
� = augmented plant matrix
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‖ ‖ = Euclidean norm for vectors and spectral norm
for matrices

I. Introduction

T HE variable structure control approach is well known for its
robustness properties and is a powerful tool for controlling

uncertain dynamical systems. Continuous time variable structure
control (VSC) systems and its applications have been extensively
studied in the literature over the past four decades.1−4 The VSC is a
special class of nonlinear control strategy characterized by a discon-
tinuous feedback control that changes the controller structure upon
reaching certain user-specified manifold called switching surface or
sliding surface σ(t). The central feature of VSC is the sliding mode
(SM), during which the system state is constrained to lie on a sliding
surface where the system dynamics are merely determined by the
dynamics of the switching surface (SS), which is of lower order.
Hence the system is invariant in the sliding mode, and the motion
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of the state trajectories are less sensitive to parameter variations and
disturbances.

Owing to the widespread use of digital controllers, VSC de-
signed on the basis of continuous system is usually implemented
by a digital computer with a certain sampling interval. This can
enhance chattering with the predesigned SM and even can cause
instability with large gains.5 In practice, fast sampling is used, but
this can lead to fatigue of actuator components. Theoretically, dis-
crete variable structure control systems (VSCS) cannot be obtained
from their continuous counterpart by means of simple equivalence.6

The discrete-time variable structure control systems (DVSCS) differ
from continuous-time VSCS mainly in the determination of switch-
ing hyperplane and the satisfaction of the reaching conditions. In the
case of DVSCS, the control input is computed at discrete instants
and applied to the system by holding the control input as a constant
throughout the sampling interval. Thus switching takes place only at
regular discrete instants. This is in contrast to the continuous-time
systems, where the switching of the control structure is made as
soon as the state trajectory crosses the switching hyperplane. Hence
the DVSCS are not necessarily robust with respect to perturbations,
if the design philosophy for continuous time systems is extended to
the discrete-time case. Also the existence of SM is not guaranteed
in the presence of uncertainties. The discrete sliding mode design
philosophy thus requires modifications.

The stability of the discrete-time sliding mode control systems is
investigated by Sarpturk et al.7 and gives a necessary and sufficient
condition for the existence of the discrete sliding mode (DSM) in
multi-input/multi-output (MIMO) systems as

|σik + 1| < |σik | i = 1 : m (1)

(m = the number of inputs) in the neighborhood of σk = 0. The con-
ditions for the existence of DSM and a design procedure for slid-
ing lattice that ensures robust stability of sliding motion are given
by Koshkouei and Zinober.8 Instead of the conventional switching
surface, in discrete-time case a switching region or a sliding lat-
tice exists in the neighborhood of the sliding surface. Furuta5 uses
the Lyapunov function Vk = 1

2 (σk)
2 for single-input/single-output

(SISO) systems and obtains the condition, which is equivalent to
Eq. (1), as

σk�σk + 1 < − 1
2 (�σk + 1)

2 (2)

In this paper, assuming all states are available, a linear reference
input dependent SS of the form σk = Sxk − Srrk − 1 is used in the dis-
crete variable structure controller design. The candidate Lyapunov
function is taken as Vk = σ T

k σk , and the discrete sliding condition8

considered is

‖σk + 1‖ < ‖σk‖ (3)

Edwards and Spurgeon9 use a similar SS, σ(t) = S1x1 + S2x2 −
Srr = 0, in the design of an output tracking controller with observer
in the continuous-time domain. Spurgeon10 gives an advanced hy-
perplane design technique, using a linear equivalent control gener-
ated from an appropriately selected hyperplane and it provides supe-
rior performance to that obtained using a complex nonlinear control
structure. Linear-quadratic-regulator (LQR)-based sliding surface
design, which allows one to specify a desired weighting matrix and
a desired real eigenvalue, is given by Tang and Misawa.11

Currently, robust sliding mode algorithms for discrete systems
are being studied by many researchers. These approaches involve
switching and nonswitching types of control. Elmali and Olgac12

and Chan13 propose nonswitching SM controllers, in which the
controller contains an estimate of the perturbations. The controller
proposed by Chan is simple and easy to implement, but its disad-
vantage is that the controller is robust only against slowly varying
perturbations. Eun and Cho14 study the robustness of multivariable
DVSC by making use of an uncertainty estimator. Their approach
requires a bound on rate of change of the uncertainties to ensure
robust stability. Furuta and Pan15 introduce the concept of sliding
sector for SISO regulator-type systems, both continuous-time and

discrete-time VSCS. According to them, the sliding sector is a re-
gion around the SS, enclosed by two surfaces and inside which a
norm of the system state decreases without any control action. A
nonswitching-type control law is used to avoid chattering by Cheng
et al.16 for regulator type discrete-time SM MIMO controller design.
This controller drives the state trajectories into a bounded region
around the origin, in the presence of bounded matched perturba-
tions, but it does not take into account the tracking requirement and
mismatched uncertainties. Chen et al.17 present a boundary-layer
approach to reduce chattering in which the width of the boundary
layer depends on the state norm for an uncertain linear system.

Missile autopilots are designed to provide stability, performance,
and robustness over a wide range of flight conditions. The equations
of motion that govern the dynamics of the missile are nonlinear,
time varying, and coupled.18 The optimal time-varying sliding sur-
face is designed by Salamci and Ozgoren,19 for a missile autopilot
by recursively approximating the nonlinear systems as linear time-
varying systems. Thukral and Innocenti20 present VSC design for
a missile autopilot that uses both aerodynamic control and reaction
jet thrusters to achieve high-angle-of-attack maneuvering. It is well
known that the linear time-invariant models developed for design
purpose are stable and can deliver satisfactory performance. Bhat
et al.21 use a linearized missile model to design a pitch autopilot by
using continuous-time variable structure controller with power rate
reaching law to track a given lateral acceleration guidance command
of step of magnitude 20 g. A similar work is done for a SISO missile
system that uses a dynamic equivalent control combined with slid-
ing mode control to track a unit step input, but the response shows
large oscillations, which are undesirable.22 A robust feed-forward
tracking control design using reaching law with DSM controller and
its application to an experimental set up of a stage driven by a linear
motor is given by Wang et al.23

This paper presents a pitch autopilot design for a dual-input air-to-
air missile using discrete-time variable structure (DVS) controller
with a sliding sector. The missile control problem under consid-
eration is to track the normal acceleration az of the pitch plane
dynamics. The optimal sliding function σk is obtained by minimiz-
ing a linear quadratic performance index,24 which weighs all of the
states, control input, tracking error, and also discrete equivalent of
the integral tracking error. The sliding sector is designed by con-
sidering the dissipativeness property25 of the system, which means
that the system absorbs more energy from the external world than it
supplies. The sliding-sector design for DVSC through dissipative-
ness property is a new approach, which has not been reported in
the literature so far. The advantage of using this method is that it
deals with the input–output energy; hence, it is a more appropriate
condition for a tracking system. The sliding sector is designed so
that the system is dissipative inside as well as outside the sector. In
this paper, chattering is reduced by a proper design of reaching law
and sliding sector.

II. Discrete Variable Structure Tracking Controller
In this section, a discrete variable structure tracking controller

with a sliding sector is designed such that a Lyapunov function
Vk = σ T

k σk decreases in the entire state space, that is, both inside
and outside the sliding sector. Let the completely controllable and
observable discrete-time nominal plant be given by

xpk + 1 = �pxpk + �puk, ytk = Cpxpk (4)

where xpk ∈ �n p is the state variable, control input uk ∈ �m and
ytk ∈ �nt is the output to be tracked. Figure 1 shows the discrete
variable structure sliding mode controller for tracking the output
ytk with respect to the reference input rk . To enable the system for
tracking the output ytk with zero steady-state error, a discrete equiv-
alent of an integrator is added in the outer loop. A unit delay of
one sampling time is introduced after the controller, to take into
account of the computational delay. Here the controller is coupled
because all states and also the tracking error are fedback to all of
the inputs, thus getting a larger design freedom so as to achieve a
better performance.
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Fig. 1 Block diagram of the DVSC for a tracking system.

In the block diagram, the tracking error ek = rk − ytk. The error
state xek, which is the discrete equivalent of an integral of the tracking
error ek and delay states xdk, are given by the difference equation,

xek + 1 = xek + Tsek = xek − TsCpxpk + Tsrk (5)

and

xdk + 1 = uk

where Ts > 0 is the sampling period. The plant is augmented with
the integrator and delay states to get
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where nt is the number of output to be tracked. Equation (6) can be
rewritten with xk = [xek, xpk, xdk]T ∈ �n as

xk + 1 = �xk + �uk + �r rk (7)

ytk = Ct xk = [Ct1 Ct2]xk where Ct = [0 Cp 0]

The controller design consists of two parts: the switching surface
design and the control law design. The switching surface is designed
so that the system will have desired characteristics on the SS and
the closed-loop system behave as a reduced-order dynamics (ROD)
while moving on the SS. In discrete-time domain, there exists a
switching region instead of a SS because of the finite sampling
time. Hence in this paper, a sliding sector is designed so that the
overall system is dissipative with respect to a supply rate. The control
law ensures reaching and sliding conditions, and it is shown that a
candidate Lyapunov function Vk decreases inside and outside the
sector with this control law.

Switching Surface Design
To design the switching surface, the state-space realization of the

augmented plant in Eq. (7) is split into regular form as

[
x1k + 1

x2k + 1

]
=

[
�11 �12

�21 �22

][
x1k

x2k

]
+

[
0

�2

]
uk +

[
�r1

0

]
rk

The square matrix �2 ∈ �m is nonsingular because the plant input
matrix �p is assumed to be of full rank. A reference-command-
dependent linear SS of the form

σk = Sxk − Srrk − 1 = S1x1k + S2x2k − Srrk − 1, σk ∈ �m (8)

is considered for the tracking controller design. This SS can be
considered as a time-varying linear surface as shown in Fig. 2, when
the reference command signal is a time-varying arbitrary signal. For

Fig. 2 Reference-command-dependent linear SS, σk = Sxk −− Srrk − 1.

simplicity of description, a two-dimensional SS is considered. The
slope of the switching function σk remains constant, whereas the
intercept varies depending on rk − 1. When the reference signal is zero
(i. e., regulator problem), SS passes through the origin, as seen in the
figure. The extreme lines of SS correspond to the maximum value
of reference signal ±rk max. In Eq. (8), rk − 1 term is used instead of
rk to avoid a noncausal feed-forward term rk + 1 in the linear control.

On the switching surface,

σk = 0 ⇒ x2k = −S−1
2 S1x1k + S−1

2 Srrk − 1 (9)

The reduced-order dynamics can be written as

x1k + 1 = �11x1k + �12[Fx1k + Grk − 1] + �r1rk (10)

where

F = −S−1
2 S1 and G = S−1

2 Sr (11)

By defining �̃ = �11, �̃ = �12, C̃t = Ct1, x̃ = x1, and D̃ = Ct2,
Eq. (10) becomes

x̃k + 1 = �̃x̃k + �̃ũk + �r1rk where ũk = Fx̃k + Grk − 1 (12)

ytk = Ct1x1k + Ct2x2k = C̃t x̃k + D̃ũk

F and G are design matrices, and it should be determined such that
the reduced-order dynamics is stable and has desired characteristics.
Here F acts as feedback gain, and G acts as a feed forward gain.
The LQR technique is used to obtain F and G, the derivation of
which is given in Appendix. Taking S2 = Im, S and Sr are obtained
as

S = [−F Im] and Sr = G (13)

Discrete Sliding-Sector Design
A new, simple, and effective design algorithm for designing the

sliding sector is obtained by using the property called dissipative-
ness, which is characterized by the existence of a function that can
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be interpreted as an abstract stored energy of the system. Let the
supply rate25 associated with the system given by Eq. (7) be

L(xk, rk) = x T
k Qxk + 2x T

k Nrk + r T
k Rrk (14)

where Q ∈ �n × n is a positive-semidefinite symmetric matrix and
R ∈ �nt × nt is a positive-definite symmetric matrix. The supply rate
is an abstraction of the concept of input power, and in physical
systems it is associated with the concept of stored energy. Let the
system given by Eq. (7), with a linear control law of the form
ul = k1xk + k2rk + k3rk − 1 be written as

xk + 1 = �eqxk + �r eqrk + �rdrk − 1 (15)

where

�eq = � + �k1, �r eq = �k2 + �r and �rd = �k3

where k1, k2, and k3 are derived in the sequel. If the system is
dissipative for a reference input rk , then it will be dissipative with
the rk − 1 input. A necessary and sufficient condition25 for the sys-
tem, xk + 1 = �eqxk + �r eqrk to be dissipative with respect to supply
rate Eq. (14), is that there exists matrices P, M , and W , with P
a nonnegative-definite symmetric matrix, satisfying the following
equations:

�T
eq P�eq − P + Q − M MT = 0, MW − N − �T

eq P�r eq = 0

R + �T
r eq P�r eq − W T W = 0 (16)

The solution of Eq. (16) for the unknown P, M , and W can be
obtained from the well-known discrete riccati equation. Rearranging
the preceding equations in quadratic form as follows,

x T
k

(
�T

eq P�eq − P + Q − M MT
)
xk

+ 2x T
k

(
MW − N − �T

eq P�r eq

)
rk − 1

+ r T
k − 1

(
R + �T

r eq P�r eq − W T W
)
rk − 1 = 0 (17)

This expression can be rewritten in terms of the switching function
σk and sliding-sector parameter δk as

σ T
k σk − δT

k δk = x̂ T
k Ñ x̂k (18)

where σ T
k σk = x̂ T

k Sd x̂k , δT
k δk = x̂ T

k Dx̂k , and x̂k = [xk, rk − 1]T , with
the matrices

Sd =
[

Q −N

−N T R

]
, D =

[
P 0

0 W T W

]
(19)

and

Ñ =
[

M MT − �T
eq P�eq �T

eq P�r eq − MW
(
�T

eq P�r eq − MW
)T −�T

r eq P�r eq

]

On using the definition of SS, that is, σk in Eq. (8), the matrices Q,
N , and R are obtained as Q = ST S, N = ST Sr , and R = ST

r Sr . The
sliding-sector parameter δk is defined so as to satisfy the conditions
for the system to be dissipative inside as well as outside the sliding
sector. The sliding sector Jd can now be defined as

Jd = {
xk

∣∣ σ T
k σk − δT

k δk ≤ 0, ∀ xk ∈ �n
}

or

Jd = {
xk |‖σk‖ ≤ ‖δk‖, ∀ xk ∈ �n

}
(20)

The width of the sliding sector ‖δk‖ = √
(x̂ T

k Dx̂k) depends on the
norm of the system state and the reference input. Hence the sliding

Fig. 3 Sliding function and sliding sector.

sector just defined is a variable-width sliding sector, and it takes into
account of the uncertainties and the time-varying reference input.
The sliding sector defined in Eq. (20) along with the switching
surface σk = 0 is shown in Fig. 3. For simplicity, a two-dimensional
space is taken to describe the sliding sector.

Sliding-Sector Design Algorithm
The following steps give a clear idea of the sliding-sector design:
1) Find the switching surface matrices S and Sr as given in Eq. (13)

and obtain the SS, σk as in Eq. (8).
2) Determine Q, N , and R as Q = ST S, N = ST Sr , and R = ST

r Sr .
3) Solve the set of equations (16) for the unknown P, M , and W .
4) Determine the sliding-sector parameter matrix D by Eq. (19).
5) Obtain ‖δk‖ = √

(x̂ T
k Dx̂k) and the sliding sector as ‖σk‖ ≤

‖δk‖ (online computation).

Discrete Variable Structure Control Law
Based on the sliding sector just given, a DVS controller is de-

signed such that 1) a candidate Lyapunov function Vk defined as
Vk = σ T

k σk keeps decreasing both inside and outside of the sliding
sector, 2) the system state is moved from the outside to the inside
of the sliding sector, and 3) the system state is constrained to stay
inside the sliding sector without chattering. The DVS controller de-
signed by Furuta and Pan15 does not ensure 3), as there is no control
input inside the sliding sector. In this paper, the DVS control law
is designed to move the system state from the outside to the inside
of the sliding sector with uk = u0, ∀ xk ∈̄Jd and subsequently, use
control uk = ul , ∀ xk ∈Jd to keep it within the sector, once it enters
the sector. The u0 is in the form of ul + ud , where ul is the linear
part and ud is the discontinuous part of the control law, and ul is
derived so as to satisfy the relation σk + 1 − βσk = 0 as

ul = −(S�)−1[(S� − βS)xk + (S�r − Sr )rk + βSrrk − 1]

ul = k1xk + k2rk + k3rk − 1 (21)

where

k1 = −(S�)−1(S� − βS), k2 = −(S�)−1(S�r − Sr )

and

k3 = −(S�)−1βSr

The design parameter β is a diagonal matrix satisfying 0 ≤ βi ≤ 1,
for i = 1 : m.

Theorem : For any controllable discrete-time plant described by
Eq. (7), the DVS control law

uk =
{

ul , ∀ xk ε Jd

u0 = ul + ud , where ud = −(S�)−1kd Sgn(σk)‖δk‖, ∀ xk ε̄ Jd

}
(22)
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makes the system asymptotically stable, if S� is invertible and
βn + kdn ≤ 1, where kd is a diagonal matrix, kdn = ‖kd Sgn(σk)‖ and
βn = Sup{βi }. The ul and u0 are the control inputs inside and out-
side the sliding sector, respectively, and are designed so that the
Lyapunov function Vk = σ T

k σk decreases both inside and outside
the sliding sector. �

Proof :
Case 1 : For xk ∈Jd , uk = ul , and the closed-loop system is given

by

xk + 1 = �xk + �uk + �r rk = �eqxk + �r eqrk + �rdrk − 1 (23)

The Lyapunov function Vk = σ T
k σk decreases inside the sector be-

cause σk + 1 − βσk = 0, which implies satisfaction of the discrete
sliding condition ‖σk + 1‖ ≤ ‖σk‖. Hence,

�Vk = Vk + 1 − Vk = σ T
k + 1σk + 1 − σ T

k σk ≤ 0

Case 2 : Outside the sliding sector, xk ∈̄Jd , the control law
uk = u0, and ‖δk‖ < ‖σk‖.
Here

σk + 1 = βσk − kd Sgn(σk)‖δk‖

where Sgn(σk) =




sgn(σ1k)

:

sgn(σmk)




‖σk + 1‖ ≤ βn‖σk‖ + ‖kd Sgn(σk)‖‖δk‖
≤ [βn + kdn]‖σk‖
≤ ‖σk‖, if βn + kdn ≤ 1

Hence Vk + 1 ≤ Vk or �Vk < 0. Thus the Lyapunpov function de-
creases outside the sliding sector ensuring reaching of the sliding
sector. Hence it has been shown that the Lyapunov function Vk

keeps on decreasing in the entire state space with the DVS control
law Eq. (22), which provides an asymptotically stable discrete-time
control system. It has been proved16 that the (n-m) eigenvalues of
the closed-loop system given by Eq. (23) are determined by the
reduced-order system

xk + 1 = [� − �(S�)−1 S�]xk (24)

σk = Sxk = 0 (25)

and the rest m eigenvalues are given by βi . To study the robust
performance of this controller [Eq. (22)], the system in the presence
of uncertainties is considered next.

III. System with Additive Uncertainties
Let the perturbed plant with both matched and mismatched addi-

tive uncertainties be given by

xk + 1 = (� + ��)xk + �uk + �r rk + f (x, k, u) (26)

where �� is the mismatched parameter uncertainty in the plant
matrix �, norm bounded by an unknown positive scalar h and
f (x, k, u) is the lumped matched uncertainty, which can be rep-
resented as

‖��‖ ≤ h (27)

f (x, k, u) = �v(x, k, u), ‖v(x, k, u)‖ ≤ ρ (28)

Here v(x, k, u) can be comprised of uncertainties, nonlinearities of
the system, and external disturbances. It is assumed that the norm
of the matched uncertainty is bounded by an unknown positive con-
stant ρ, as given in Eq. (28). For simplicity v(x, k, u) is written as
vk . Without loss of generality, any uncertainty present in the input

distribution matrix � is assumed to be incorporated in the system
disturbance term f (x, k, u). The DVS control law given in Eq. (22)
ensures the system state to move from outside to inside of the slid-
ing sector and finally to bring the trajectories into the vicinity of
the SS, even in the presence of matched and mismatched bounded
uncertainties.

Case 1: Inside the sliding sector, ‖σk‖ ≤ ‖δk‖, and uk = ul .

σk + 1 = βσk + S��xk + S�vk (29)

‖σk + 1‖ ≤ ‖βσk‖ + ‖S��xk‖ + ‖S�vk‖
≤ [βn + h� + ρm]‖σk‖

‖σk + 1‖ ≤ ‖σk‖ if βn + h� + ρm ≤ 1 (30)

where

βn = Sup{βi }, h� = ‖S��xk‖/‖σk‖
and ρm = ‖S�vk‖/‖σk‖ (31)

Hence the state trajectories will be driven towards the SS and remain
in the close neighborhood of σk = 0 when the uncertainties satisfies
the norm condition.

Case 2: Outside the sliding sector,

σk + 1 = S��xk + S�vk + βσk − kd sgn(σk)‖δk‖ (32)

‖σk + 1‖ ≤ ‖S��xk‖ + ‖S�vk‖ + βn‖σk‖ + kdn‖δk‖
≤ [h� + ρm + kdn + βn]‖σk‖
≤ ‖σk‖, if h� + ρm + kdn + βn ≤ 1 (33)

The diagonal elements of kd and β are selected so that Eq. (33) is
satisfied. The conditions given by Eq. (30) and Eq. (33) are sufficient
conditions, which are highly conservative; hence, to obtain bound
on �� and vk , scaling factors hr ≤ 1 and ρr ≤ 1 are taken such that

‖S��xk‖ ≤ hr‖S‖‖��‖‖xk‖ and ‖S�vk‖ ≤ ρr‖S‖‖�‖‖vk‖

Now the bound on the matched and mismatched uncertainties can
be written as

‖vk‖ ≤ ρ, ρ <
η(1 − βd)‖σk‖

‖S‖‖�‖ρr
(34)

‖��‖ ≤ h, h <
(1 − η)(1 − βd)‖σk‖

‖S‖‖xk‖hr
(35)

where βd = βn + kdn and η is such that 0 ≤ η ≤ 1. The switching
function σk will keep on decreasing if the preceding sufficient con-
ditions are satisfied. However for a particular value of βn and un-
certainties �� and vk , σk will be a small, nonzero value, and it can
be obtained from Eq. (30) as

‖σk‖ ≥ ‖S��xk‖ + ‖S�vk‖
1 − βn

(36)

Equation (36) gives the least upper bound on ‖σk‖, and if it sat-
isfies ‖σk‖ ≤ ‖δk‖ then the DVS controller works satisfactorily.
Thus from Eq. (33), ‖σk + 1‖ ≤ ‖σk‖ ⇒ �Vk ≤ 0. This shows that the
Lyapunov’s stability criteria is satisfied both inside and outside the
sliding sector with the DVS control law, hence providing an asymp-
totically stable system in the presence of additive uncertainties.

IV. DVSC Applied to Missile Tracking
The missile dynamics is highly uncertain because of large varia-

tions in dynamic pressure and in precise knowledge of aerodynamic
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coefficients and is also subjected to large external disturbances.
Hence it needs a robust control approach like VSC for the con-
troller design. A dual-input air-to-air missile with cruciform wings
is considered here, and the short-period dynamics of the missile are
used for the design of controller. The linearized equations of motion
of the missile in pitch plane are given by

α̇ = (Zα/V )α + q + (
Zδw

/
V

)
δw + (

Zδt

/
V

)
δt

q̇ = Mαα + Mqq + Mδw δw + Mδt δt (37)

where α is the angle of attack (AOA) in rad, q is the pitch rate in
rad/second, and V is the missile forward velocity in meters/second.
The wing and tail control surface deflections in rad are δw and δt

respectively, and Zα , Mα , Zδ , Mq , etc. are the aerodynamic stability
derivatives. The missile is assumed to have the following wing and
tail actuator dynamics as

τwδ̇w + δw = δwc, τt δ̇t + δt = δtc (38)

where τw and τt are the actuator time constants and δwc, δtc are the
wing and tail actuator commands in rad. The output for tracking the
LATAX command rk is the measured acceleration az given by

az = V (α̇ − q) + lq̇

hence

az = (Zα + l Mα)α + l Mqq + (
Zδw + l Mδw

)
δw + (

Zδt + l Mδt

)
δt

(39)

where l is the distance of the accelerometer ahead of center of grav-
ity. After augmentation of the actuator states, let the state-space
model of the plant in continuous-time domain be written as

ẋ p = Apx p + Bpu, yt = Cpx p (40)

The discretized state-space model and the tracking output can be
written as in Eq. (4), with plant states xpk = [α, q, δw, δt ]T and input
uk = [δwc, δtc]T . In this paper, the autopilot is designed to meet the
following specifications even in the presence of (bounded) parame-
ter uncertainties and external disturbances.

Performance Specifications
Considering the guidance command profile and hardware limi-

tations, the controller specifications and constraints are chosen as
follows:

1) The system response specifications are a) settling time ≤ 0.2 s,
b) percentage overshoot ≤5% final value, and c) AOA ≤ 8 deg.

2) The actuator constraints are the maximum permissible deflec-
tion of wing and tail control surfaces δw, δt = ±20 deg and the max-
imum slew rates δ̇w, δ̇t = ±300 deg/s.

V. Simulation Results
Figure 4 shows the discrete variable structure sliding mode con-

troller for tracking the lateral acceleration az with respect to the
reference input rk . Here the wing and tail actuators are used to

Fig. 4 Block diagram of the DVSC for missile tracking system.

control the missile lateral acceleration. In this figure, xak represents
[xpk, xdk]′.

Simulation studies are carried out for the linear model of an air-
to-air missile at operating condition corresponding to Mach number
M = 4 by using the software packages MATLAB® and SIMULINK.
The main objective of the simulation is to validate the autopilot
performance and the efficiency. At the operating point M = 4, trim
α = 2.5 deg, and at t = 5 s the plant matrices in continuous-time
domain as in Eq. (40) are given next:

Ap =




−0.8392 1 −0.4453 −0.1113

−116.6676 −0.9445 52.6213 −335.3318

0 0 −64 0

0 0 0 −100




Bp =




0 0

0 0

64 0

0 100




and

Cp = [−1166.1 −0.5 −561.5 −314.6]

A sampling period of 10 ms is used to discretize the plant. For
designing the controller, a first-order actuator model is used while
simulation is carried out using a second-order actuator model. The
robust control objective for this system is to track a lateral accel-
eration guidance command given by the guidance station, in the
presence of uncertainties. Here in the simulation study, two types
of reference inputs are considered as 1) guidance command of step
input of magnitude 20 g and 2) a typical time-varying LATAX pro-
file. In the controller design, the discretized plant is augmented with
the error state and delay states, where the delay states are included
to take into account of the computational delay. In the computation
of F and G, the weighting matrices Q1, Q2, and Rc as in Eq. (A2),
in continuous-time domain are selected as

Q1 = diag([0.21, 0, 0, 0, 0]), Q2 = 3 × 10−4

and Rc =
[

100 0

0 10

]

Then Qc is calculated by Eq. (A3), and the discretized weighting
matrices are obtained by Eq. (A4). By using Eq. (A8), the optimal
feedback gain F and feed-forward gain G are computed and hence
the optimal SS σk . From S = [−F Im] and Sr = G, the S and Sr

matrices are obtained as

S =
[

0.0368 2.9614 0.0948 0.6053 −0.1501 1 0

−0.0032 −1.415 −0.1831 −0.1717 1.0164 0 1

]

Sr = 10−4 ×
[−0.8549

0.1001

]

The eigenvalues of the reduced-order system, when the
state trajectory is sliding on the SS, are given by {0.1646,
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Fig. 5 Response of the missile and actuator (nominal system) with sliding sector.
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Fig. 6 Response of the missile and actuator with DVSC in the presence of matched and mismatched uncertainties.
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0.4924, 0.7446 + 0.0998i, 0.7446 − 0.0998i, 0.7911}. The solu-
tion of Eq. (16) for P, M , and W can be obtained as

P =




0.0000 0.0020 0.0002 −0.0001 −0.0011 0.0001 −0.0011

0.0020 3.1061 0.3417 −0.1756 −1.8187 0.2086 −1.7585

0.0002 0.3417 0.0376 −0.0194 −0.2002 0.0229 −0.1936

−0.0001 −0.1756 −0.0194 0.0101 0.1032 −0.0116 0.0998

−0.0011 −1.8187 −0.2002 0.1032 1.0657 −0.1218 1.0305

0.0001 0.2086 0.0229 −0.0116 −0.1218 0.0142 −0.1177

−0.0011 −1.7585 −0.1936 0.0998 1.0305 −0.1177 0.9965




M = [−0.0369, −2.7768, −0.0729, −0.6211, 0.0310, −0.9931, −0.1161]T

and

W = 8.6088 × 10−5

The matrix D in the sliding-sector definition is determined
by Eq. (19), and the sliding sector is obtained as in Eq. (20).

Fig. 7 Uncertainty bounds for ∆Φ and vk.

Fig. 8 Wind gust input used in the simulation.

The design parameter kd in the control law Eq. (22) is selected
as diag([0.4, 0.2]). With β = diag([0.2, 0.1]), the eigenvalues of

�eq in Eq. (23) are obtained as {{0.1646, 0.4924 0.7446 ±
0.0998i, 0.7911, 0.2, 0.1}.

The simulation results of the nominal system with DVS con-
trol law Eq. (22) are given in Fig. 5. The dotted and solid
lines are the responses corresponding to β = diag([0.2, 0.1]) and
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Fig. 9 Response of the missile and actuator with DVS control law in the presence of noise and gust input.
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Fig. 10 Response of the missile system for a typical LATAX profile rk.
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β = diag([0.9, 0.7]), respectively. It is observed that with very small
value of β slight oscillations are present in the response plots, but
the reaching time and rise time are small. With this DVS controller,
perfect tracking is achieved, with a low AOA of −1.64 deg. The wing
and tail control surface deflections are −15.9 deg and −1.9 deg, re-
spectively. The wing actuator contributes a major part in generating
the lateral acceleration of 200 m/s2, since the wing control surface
is larger than the tail control surface. To limit the actuator rates to
±300 deg/s, a saturation block is included in the simulation. Ac-
tuator saturation might not take place in a practical scenario where
the magnitude of the command signal is much smaller than 20 g.
The actuator slew rates go to zero approximately in 0.2 s. This con-
troller enables tracking of a LATAX step command of magnitude as
high as 20 g with a small rise time of 0.07 s and a settling time of
0.114 s as seen from the az vs t response plot. Hence this controller
is better suited in a missile application, that is, in the terminal phase
of the missile guidance when the missile is closing on to the target.
When there is no uncertainty present in the system, the switching
function σk goes to zero. The nonzero value of ud indicates the
reaching mode. It is observed that within a few sampling instants
the state trajectories enter into the sliding sector and thereafter re-
main inside it. From the plot of ud , the reaching time is 0.11 s for
β = diag([0.2, 0.1]) and 0.18 s for β = diag([0.9, 0.7]), and the
tracking error goes to zero in 0.3 s. Even though Sr is very small, it
is quite acceptable, because the dc gain of the plant is very high for
the acceleration output and the system works satisfactorily even if
Sr is made zero.

The nominal plant is considered to be the missile model operating
at M = 4, and the uncertain plant is selected as the missile model at
M = 1.2. The difference in the system matrices in the continuous-
time domain at two operating points is taken as the mismatched
plant uncertainty �Ap and is given as

�Ap =




−0.7086 0 −0.7634 −0.1909

−59.3288 −1.5527 −5.7817 65.6204

0 0 0 0

0 0 0 0




�φ in Eq. (26) is the discretized version of �Ap . The matched
uncertainty15 f (k) = �vk is taken as a nonlinear function in
α, q, δw, δt and sampling instant k. Let v(k) = 0.001[v1(k), v2(k)]T ,
where

v1(k) = α2 − q2 + αδw − q cos(k) + sin(k)

v2(k) = α2 + q2 + αδw + qδt + 0.5 cos(k)

Figure 6 shows the missile responses in the presence of matched
and mismatched uncertainties. There is a tradeoff between the design
parameters β and kd with uncertainties; a small value of β is desired
to accommodate large uncertainties. Hence β = diag([0.2, 0.1]) is
used in this and later simulations. The controller works efficiently
satisfying all of the performance specifications, with a slight in-
crease in settling time to 0.2 s and with the same rise time as for the
nominal system. The wing and tail control surface deflections are
increased to −18 and −2.5 deg, respectively. The steady-state value
of AOA is −0.55 deg and gives a fast response satisfying all other
specifications, even in the presence of uncertainties. The reaching
time is 0.18 s, and the tracking error goes to zero in 0.4 s. The value
of σk is not necessarily zero in the presence of uncertainties as in
Eq. (36), but it satisfies the condition ‖σk + 1‖ ≤ ‖σk‖. The uncer-
tainty bounds for vk and �� are given in Fig. 7, which are only a
sufficient condition. The dotted lines represent ‖vk‖ and ‖��‖, and
solid lines represent ρ and h . The plot of ‖vk‖ satisfies Eq. (34),
whereas a plot of ‖��‖ does not satisfy Eq. (35). This shows that
the system can still give satisfactory responses for higher values of
uncertainties for which the norm-bound conditions, Eqs. (34) and
(35), might not be fully satisfied. The value of hr and ρr is taken as
hr = 0.0004 and ρr = 1.

Figure 8 gives the plot of the wind gust input of speed 30 m/s,
which is equivalent to wind induced in the AOA α, for a duration

of 1 s. The response curves for the missile with this wind gust and
also with state and measurement noise are shown in Fig. 9. The rise
time and settling time are still small, 0.123 and 0.187 s, respectively.
The AOA is increased from −1.6 to −3.25 deg, and δw and δt are
well within the limits. The σk value is close to zero, and the ud plot
shows that switching occurs during the gust period. The controller
tracks the LATAX command even in the presence of noise and gust
input with a small tracking error. This controller exhibits a very
good disturbance rejection and also shown to be very robust against
parameter variations as seen from Figs. 6 and 9.

The simulation results of the system to track a typical LATAX
profile generated by a proportional navigation guidance scheme for
an air-to-air missile for an incoming target is given in Fig. 10. The
LATAX command is for a period of 300 s, and the initial negative g
is for the clearing of the launching aircraft and then for the climbing
of the missile. Both the the wing and tail control surfaces are ac-
tive and contribute to generate the required g. As seen from the ud

plot, switching of the controller takes place when rk varies rapidly.
Throughout the control period perfect tracking is achieved, and the
σk values are close to zero. The difference between the command
and the actual measured acceleration is negligibly small, which can
also be seen from the bottom plot of Fig. 10 for the tracking error ek .
The tracking error momentarily exists, whenever rk changes rapidly.

The main advantage with this DVS controller is that for the im-
plementation the upper bound on the matched and mismatched un-
certainties, ρ and h need not be known beforehand; instead only the
norm-bound conditions are required to be satisfied. This is only a
sufficient condition, which is slightly restrictive. The system could
still work in stable mode even if ‖vk‖ > ρ or �φ > h.

VI. Conclusion
In this paper a missile pitch autopilot is designed using discrete

variable structure controller with sliding sector for a dual-input mis-
sile to track a given lateral acceleration command of 20 g. A new
approach based on the dissipativeness property of the system is used
for the variable width sliding-sector design. The optimal switching
surface is designed by the linear-quadratic-regulator method so that
the ROD will have the desired characteristics. The discrete-time
variable structure control law drives the state trajectories into the
sliding sector and is constrained to stay inside it thereafter, in the
presence of bounded matched and mismatched uncertainties. This
controller gives satisfactory performance and very fast tracking with
a small angle of attack, and the tracking error goes to zero approxi-
mately in 0.12 s. The simulation study with matched and mismatched
uncertainties, noise, and gust input indicates that the controller is ro-
bust with respect to parameter variations and external disturbances.

Appendix: Optimal SS Design by LQR
F and G are determined so that the reduced-order system Eq. (12)

is stable and has the desired characteristics. For the sake of simplic-
ity, the symbol ∼ in Eq. (12) is omitted for brevity in the following
derivations. Let the performance index (PI) to be minimized for the
continuous plant be

Jc =
∫ ∞

0

(
x T Qcx + uT Rcu

)
dt (A1)

In the SS design, the PI is modified to include the cost term with
tracking error without creating confliction, which provides better
handle on the response of the system. Hence the generalized PI24 is
of the form

Jc =
∫ ∞

0

(
uT Rcu + ȳT Q1 ȳ + eT Q2e

)
dt (A2)

where Q1, Q2 are nonnegative definite symmetric matrices, and
ek is the tracking error. The pseudo output ȳ is given by
ȳ = C̄x, C̄ = I − LCt , L = CT

t (Ct CT
t )−1. This PI can be written in

convenient form as

Jc =
∫ ∞

0

[
(x − x̄)T Qc(x − x̄) + uT Rcu

]
dt, x̄ = Lr
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where

Qc = C̄T Q1C̄ + CT
t Q2Ct (A3)

To design the controller in the discrete-time domain, it is appropriate
to proceed with approximate discretized PI26

Jd = 1

2

N∑
k = 0

(xk − x̄k)
T Qd(xk − x̄k) + 2(xk − x̄k)

T Nd uk + uT
k Rd uk

where

Qd = (Ts/2)
(
�T Qc� + Qc

)
, Nd = (Ts/2)

(
�T Qc�

)
(A4)

and

Rd = (Ts/2)
(
�T Qc�

) + Ts Rc

x̄k = Lrk is some special trajectory, called desired state trajectory,
related to the desired output trajectory rk . By selecting appropriate
Q1, Q2, and Rc, we can obtain the matrix F and hence S. In practice
it is easy to select Qc and Rc, then use Eq. (44) obtain its discrete
version to calculate the feedback gain. Also this takes into account
the sampling rate effects on the switching surface design. Now ad-
joining the state equation with the preceding PI by use of Lagrange
multipliers and minimizing with respect to λk + 1, uk and xk , give
the state equation, costate equation, and the control equation. Based
on the sweep method, where λk

�= Pk xk + sk , one gets the optimal
control uk and the difference equations in Pk and sk as

uk = −R̄−1
d

[(
�T Pk + 1� + N T

d

)
xk + �T sk + 1 − N T

d Lrk

]
(A5)

Pk = �T Pk + 1� − (
�T Pk + 1� + Nd

)T
R̄−1

d

(
�T Pk + 1� + Nd

)+ Qd

(A6)

sk = [
�T − (

�T Pk + 1� + Nd

)
R̄−1

d �T
]
sk + 1 − Qrrk (A7)

where

R̄d = (
Rd + �T Pk + 1�

)

and Qr = Qd L − (
�T Pk + 1� + Nd

)
R̄−1

d N T
d L

Pk and sk are the solutions of the preceding backward dif-
ference equations. At steady state, Eq. (47) can be written
as sk = H−1 Qrrk , where H = �T − (�T P� + Nd)R̄−1

d �T − I and
where P = Pk = Pk + 1. Now the optimal control Eq. (45) can be
rewritten as uk = Fxk + Grk , with

F = −R̄−1
d

(
�T Pk� + N T

d

)

and G = −R̄−1
d

(
�T H−1 Qr − N T

d L
)

(A8)

where F is the feedback gain and G is the feed-forward gain.
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